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The antipode of linearized Hopf monoids
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Abstract. Many combinatorial Hopf algebras H in the literature are the functorial
image of a linearized Hopf monoid H. That is, H = K(H) or H = K(H). For the
functor K, the antipode of H may not be preserved, but the Hopf monoid L×H gives
H = K(H) = K(L × H), and the functor K preserves antipodes. In this paper, we
give a cancelation free and multiplicity free formula for the antipode of L ×H. We
also compute the antipode for H when it is commutative and cocommutative. We
get new formulas that are not always cancelation free but can be used to obtain one
for H in some cases. The formulas for H involve acyclic orientations of hypergraphs.
In an example, we introduce a chromatic invariant for the increasing sequences of a
permutation and show that its evaluation at t = −1 relates to another statistic on
permutations.
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Introduction

In recent literature, we see a wealth of results with cancelation free formulas for antipode
in various graded Hopf algebras [7, 5, 6, 1]. The interest of such formulas lies in their
geometric interpretation (as in [1]) or to allow a structural understanding of the principal
evaluation of the combinatorial invariants. One remarkable example of this is the proof
of Humpert-Martin [7] of a theorem of Stanley.

The general principle is that antipode formulas give us interesting identities for
the combinatorial invariants. A theorem of [2] gives us a canonical way of construct-
ing combinatorial invariants with values in the space QSym of quasisymmetric func-
tions. Given a combinatorial Hopf algebra H =

⊕
n≥0 Hn with multiplicative morphism

ζ : H → k we have a unique Hopf morphism Ψ : H → QSym such that ζ = φ1 ◦Ψ where
φ1
(

f (x1, x2, . . .)
)
= f (1, 0, 0, . . .). Moreover, there is a Hopf morphism φt : QSym → k[t]

given by φt(Ma) = ( t
`(a)), where Ma is the monomial quasisymmetric function indexed

by an integer composition a = (a1, a2, . . . , a`) and `(α) = `.
For H the Hopf algebra of graphs, and ζ defined by ζ(G) = 1 if G is discrete graph

and 0 otherwise [2, Example 4.5], we have that χG(t) = φt ◦ Ψ(G) is the chromatic
polynomial of G. To understand Stanley’s theorem about acyclic orientations of G we
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remark that the antipode of k[t] is given by S
(

p(t)
)
= p(−t). So we have χG(−1) =

ζ ◦ S(G). It is now clear that the result of Stanley follows from the cancelation free
formula of the antipode on graphs as given by [7, 1].

Here, we present a general framework that allows us to derive new formulas for
the antipode of many of the graded Hopf algebras in the literature. To achieve this,
we lift the structure of a graded Hopf algebra to a Hopf monoid in Joyal’s category of
species [3]. The few basic notions and examples needed for our purposes are reviewed
in Section 1.

The first goal of this paper is to construct a cancelation free and multiplicity free
formula for the antipode of the Hadamard product L×H of the Hopf monoids of linear
order L and a linearized Hopf monoid H. This surprising result will be done in Section 2.
One interesting fact is that even if at the level of Hopf monoid the formula is cancelation
free, many cancelations remain when applying K(L×H). Yet this gives us new formulas
for the antipode and potentially new identities. We discuss this in Section 4. Here K
and K are the Fock functors that give graded Hopf algebras from Hopf monoids (see
Section 1).

In Section 3, we consider the antipode formula for a commutative and cocommuta-
tive linearized Hopf monoid H. One consequence is that the most interesting case to
consider is the Hopf monoid of hypergraph HG as defined in Example 1.3. The Hopf
monoid HG contains all the information of the antipode for any other commutative and
cocommutative linearized Hopf monoid H. This is an interesting fact and we will show
completely the relationship. We give an antipode formula for H in Section 3.1 related to
orientation of hypergraphs. We will derive an interesting identity using our new formu-
las for the antipode in Section 4.1. In particular we introduce a chromatic polynomial
for total orders (permutations) and show an analogue of Stanley’s theorem in that case.

From this work we see that it is important to study the Hopf monoid HG as defined
in Example 1.3. In future work, with John Machacek, we will show the geometric inter-
pretation for the antipode of HG is encoded by a hypergraphical nestohedron. This is
done in the spirit of the work in [1].

1 Hopf monoids

We review basic notions on Hopf monoids. See [3] for a deeper study on this topic. A
vector species H is a collection of vector spaces H[I], one for each finite set I, equivariant
with respect to bijections I ∼= J. A morphism of species f : H → Q is a collection of
linear maps f I : H[I]→ Q[I] which commute with bijections.

A set composition of a finite set I is a finite sequence (A1, . . . , Ak) of disjoint subsets of
I whose union is I. In this situation, we write (A1, . . . , Ak) |= I.

A Hopf monoid consists of a vector species H equipped with two collections µ and ∆
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of linear maps H[A1]⊗H[A2]
µA1,A2−−−→ H[I] and H[I]

∆A1,A2−−−→ H[A1]⊗H[A2] subject to
a number of standard axioms (associativity, unity, compatibility, etc). The Hopf monoid
H is connected if H[∅] = k.

The collection µ is the product and the collection ∆ is the coproduct of the Hopf monoid
H. For any Hopf monoid H the existence of the antipode map S : H → H is guaranteed
and it can be computed using Takeuchi’s formula as follows. For any finite set I

SI =
|I|

∑
k=1

∑
(A1,...,Ak)|=I

(−1)kµA1,...,Ak ∆A1,...,Ak = ∑
A|=I

(−1)`(A)µA∆A . (1.1)

Here, for k = 1, we have µA1 = ∆A1 = 1I the identity map on H[I], and for k > 1,
µA1,...,Ak = µA1,I\A1

(1A1 ⊗ µA2,...,Ak) and ∆A1,...,Ak = (1A1 ⊗ ∆A2,...,Ak)∆A1,I\A1
.

Example 1.1 (Linear orders L). For any finite set I let l[I] be the set of all linear orders
on I. For instance, if I = {a, b, c}, l[I] = {abc, bac, acb, bca, cab, cba}. The vector species
L is such that L[I] := kl[I] is the vector space with basis l[I].

Let (A1, A2) |= I. Given linear orders α1 ∈ l[A1] and α2 ∈ l[A2], their concatenation
α1 · α2 ∈ l[I]. This is the linear order given by α1 followed by α2. Given a linear order α on
I and P ⊆ I, the restriction α|P is the ordering in P given by the order α. These operations
give rise to maps (α1, α2) 7→ α1 · α2 and α 7→ (α|A1 , α|A2). Extending by linearity, we
obtain linear maps µA1,A2 : L[A1] ⊗ L[A2] → L[I] and ∆A1,A2 : L[I] → L[A1] ⊗ L[A2]
which turn L into a cocommutative but not commutative Hopf monoid.

Example 1.2 (Graphs G). A (simple) graph g on a finite set I is a collection E of subsets of
I of size 2. The elements of I are the vertices of g. There is an edge between two vertices
i, j if {i, j} ∈ E. Given a graph g on I and P ⊆ I, the restriction g|P is the graph on the
vertex set P whose edges are the edges of g between elements of P. Let (A1, A2) |= I.
Given graphs gi of Ai, i = 1, 2, their union is the graph g1 ∪ g2 of I whose edges are
those of g1 and those of g2.

Let g[I] denote the set of graphs on I and G[I] = kg[I] the vector space with ba-
sis g[I]. A Hopf monoid structure on G is defined from (g1, g2) 7→ g1 ∪ g2 and g 7→
(g|A1 , g|A2). Extending by linearity, we obtain linear maps µA1,A2 : G[A1] ⊗ G[A2] →
G[I] and ∆A1,A2 : G[I] → G[A1] ⊗G[A2]. These operations turn the species G into a
Hopf monoid that is both commutative and cocommutative.

Example 1.3 (Hypergraphs HG). Let 2I denote the collection of subsets of I. Let HG[I] =
khg[I] be the space spanned by the basis hg[I] where hg[I] =

{
h ⊆ 2I : U ∈ h implies

|U| ≥ 2
}

An element h ∈ hg[I] is a hypergraph on I. For (P, T) |= I and h, k ∈ hg[I],
the multiplication is given by µP,T(h, k) = h ∪ k and the comultiplication is given by
∆P,T(h) = h|P ⊗ h|T where h|P = {U ∈ h : U ∩ P = U}. Extending these definitions
linearly we have that HG is commutative and cocommutative Hopf monoid.
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Given two species H and Q, their Hadamard product is the species H×Q defined by
(H ×Q)[I] = H[I] ⊗Q[I]. If H and Q are Hopf monoids, then so is H ×Q, with the
multiplication and comultiplication defined pointwise. As described in [3], there are
some interesting functors from the category of species to the category of graded vector
spaces. Let [n] := {1, 2, . . . , n} and assume throughout that char(k) = 0. Given a species
H, the symmetric group Sn acts on H[n] by relabelling. Define the functors K and K
by K(H) =

⊕
n≥0 H[n] and K(H) =

⊕
n≥0 H[n]Sn where H[n]Sn = H[n]

/
〈x−H[σ](x) |

σ ∈ Sn; x ∈ H[n]〉 denotes the quotient space of equivalence classes under the Sn action.
When H is a Hopf monoid, we can build a product and coproduct on K(H) and K(H)
from those of H together with certain canonical transformations.

A very interesting relation between the functors K and K is given in [3, Theo-
rem 15.13] as follows: K(L × H) ∼= K(H). In this paper we aim to make use of this
relation to study the antipode problem for some Hopf algebras.
Linearized Hopf monoids: A set species h is a collection of sets h[I], one for each finite set
I, equivariant with respect to bijections I ∼= J. We say that h is a basis for a Hopf monoid
H if for every finite set I we have that H[I] = kh[I], the vector space with basis h[I]. We
say that the monoid H is linearized in the basis h if the product and coproduct maps have
the following properties. The product µA1,A2 : H[A1]⊗H[A2]→ H[I] is the linearization
of a map h[A1]⊗ h[A2] → h[I] and the coproduct ∆A1,A2 : H[I] → H[A1]⊗H[A2] is the
linearization of a map h[I] → (h[A1]⊗ h[A2]) ∪ {0} . From now on, we will use capital
letters for vector species and lower case for set species. The Hopf monoids L, G and HG
are linearized in the bases l, g and hg respectively.

2 Antipode for linearized Hopf monoid L×H

In this section we show a multiplicity free and cancelation free formula for the antipode
of Hopf monoids of the form L×H where H is linearized in some basis. Let H be a Hopf
monoid linearized in the basis h. We intend to resolve the cancelations in the Takeuchi
formula for L × H. For a fixed finite set I let (α, x) ∈ (l × h)[I], that is, α is a linear
ordering on I and x is an element of h[I]. From (1.1) we have

SI(α, x) = ∑
A|=I

(−1)`(A)µA∆A(α, x) = ∑
A|=I

∆A(x) 6=0

(−1)`(A)(αA, xA), (2.1)

summing over all A = (A1, . . . , Ak) |= I, where αA denotes the element in l[I] given
αA = α|A1 · α|A2 · · · αα|Ak and if ∆A(x) 6= 0, then xA = µA∆A(x) ∈ h[I]. Each composition
A gives rise to single elements αA and xA since L and H are linearized in the basis l and
h, respectively. We can thus rewrite (2.1) as

SI(α, x) = ∑
(β,y)∈(l×h)[I]

(
∑
A|=I

(αA ,xA)=(β,y)

(−1)`(A)
)
(β, y). (2.2)
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Let Cβ,y
α,x =

{
A |= I : (αA, xA) = (β, y)

}
.

Theorem 2.1. Let H be a linearized Hopf monoid in the basis h. For (α, x) ∈ (l × h)[I] we
obtain

SI(α, x) = ∑
(β,y)∈(l×h)[I]

cβ,y
α,x (β, y), where cβ,y

α,x = ∑
A∈Cβ,y

α,x

(−1)`(A) ∈ {1,−1, 0}. (2.3)

The proof of this theorem and the following lemmas are given in our full paper [4].
Here we sketch the main steps. We make use of the refinement order on set compositions
to show that the set Cβ,y

α,x has a unique minimum.
Minimal element of Cβ,y

α,x : Given A = (A1, . . . , Ak) and B = (B1, . . . , B`) set composi-
tions on a set I, we say that A refines B, and we write A ≤ B, if the parts of B are
union of consecutive parts of A. In what follows we will write (2, 57, 3, 9, 68) instead of(
{2}, {5, 7}, {3}, {9}, {6, 8}

)
. For example A = (2, 57, 3, 9, 68) ≤ (2357, 689) but A does

not refine (57, 23, 689). Denote by (PI ,≤) the poset of set compositions of I, ordered by
refinement. Consider the order ≤ restricted to the set Cβ,y

α,x .

Lemma 2.2. If Cβ,y
α,x 6= ∅, then there is a unique minimal element in (Cβ,y

α,x ,≤).

For the rest of this section, let α, β, x and y be fixed and let Λ = (Λ1, Λ2, . . . , Λm) be
the minimum of Cβ,y

α,x 6= ∅. For any A ∈ Cβ,y
α,x let [Λ, A] denote the interval

{
B |= I : Λ ≤

B ≤ A
}
⊆ PI .

Lemma 2.3. If Cβ,y
α,x 6= ∅, then for any A ∈ Cβ,y

α,x we have that [Λ, A] ⊆ Cβ,y
α,x .

Lemma 2.4. For Cβ,y
α,x 6= ∅, the minimal elements of [Λ, (I)] \ Cβ,y

α,x are all of the form
(Λ1, . . . , Λi−1, Λi ∪Λi+1 ∪ · · · ∪Λj, Λj+1, . . . , Λm) for some 1 ≤ i < j ≤ m.

Graph Gβ,y
α,x : Using Lemma 2.4 we define a graph Gβ,y

α,x on the vertex set [m] as follows.
We have an edge {a, b} ∈ Gβ,y

α,x for each minimal element of [Λ, (I)]\Cβ,y
α,x . More precisely,

{a, b} is an edge in Gβ,y
α,x if for 1 ≤ a < b ≤ m the following holds:

(1) For Bab = (Λ1, . . . , Λa−1, Λa ∪ · · · ∪Λb, Λb+1, . . . , Λm) we have αBab 6= β or xBab 6= y.
(2) For any a < r < b, we have αBar = β = αBrb and xBar = y = xBrb .

Condition (1), in particular guarantees that no element A ∈ Cβ,y
α,x induces an edge in Gβ,y

α,x .
Condition (2) allows us to conclude that the graph G is non-nested: for any pair of edges
(a, b), (c, d) ∈ G such that a ≤ c ≤ b, it follows a < c ≤ b < d

Example 2.5. Consider the Hopf monoid of graphs G as in Example 1.2. G is linearized
in the basis g. Let I = {a, b, c, d, e, f , h}; x, y ∈ g[I] be the graphs

x =

a f c
d e

h
b y =

a f c
d e

h
b
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and α, β be the orders α = abcde f h and β = abde f hc. The minimum element of Cβ,y
α,x

is Λ = (a, b, de f , h, c). Since Λ has 5 parts, the graph Gβ,y
α,x is built on the set [5]. We

have Gβ,y
α,x = {{2, 4}, {4, 5}}. The edges {2, 4} since xB24 6= y and {4, 5} since αB45 6= β.

We identify the set compositions in the interval [Λ, (I)] with the set compositions of the
interval [(1, 2, 3, 4, 5), (12 · · · 5)]. We can represent Cβ,y

α,x as the following poset:

1,2,3,4,5

12,3,4,5 1,23,4,5 1,2,34,5 1,2,3,45

123,4,5 12,34,5 1,234,5

where the set compositions in red are the minimal compositions not in Cβ,y
α,x .

Remark 2.6. As in the example above, for now on we will identify the set compositions
in the interval [Λ, (I)] with the set compositions of the interval [(1, 2, . . . , m), (12 · · ·m)].
An element A ∈ Cβ,y

α,x is viewed as a set composition A |= [m].

In our full paper [4], we use the structure of the graph Gβ,y
α,x to define a sign reversing

involution on the set Cβ,y
α,x that has at most a single fixed point. This completes the sketch

of our proof of Theorem 2.1.
The structure of Cβ,y

α,x depends only on the structure of the graph Gβ,y
α,x , which as

remarked earlier, is non-nested. For G := Gβ,y
α,x we let C(G) := Cβ,y

α,x and c(G) := cβ,y
α,x.

Definition 2.7. We say that G is disconnected if there exists a vertex 1 ≤ r < m such that
there is no {a, b} ∈ G with a ∈ {1, . . . , r} and b ∈ {r + 1, . . . , m}.
Lemma 2.8. If G is disconnected, then c(G) = 0.

Lemma 2.9. If {i, i + 1} ∈ G for some 1 ≤ i < m, then c(G) = c(G|{1,...,i}) · c(G|{i+1,...,m}).

3 Antipode for commutative linearized Hopf monoid H

In this section we show new formulas for commutative and cocommutative linearized
Hopf monoid H. We also aim to introduce a geometrical interpretation related to our
antipode formula in terms of certain faces of a polytope in the spirit of the work of
Aguiar-Ardila [1]. To achieve this, first we give a formula for the antipode in terms of
orientations in hypergraphs as in Section 3.1. The second part will be done jointly with
J. Machacek in a sequel paper and is previewed in Section 5.
Takeuchi’s Formula for H: Let H be a Hopf monoid linearized in the basis h. Again, we
intend to resolve the cancelation in the Takeuchi formula for H. For a fixed finite set I
let x ∈ h[I]. From (1.1) we have

SI(x) = ∑
A|=I

(−1)`(A)µA∆A(x) = ∑
A|=I

∆A(x) 6=0

(−1)`(A)xA, (3.1)
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where for (A1, . . . , Ak) |= I and ∆A(x) 6= 0 we write xA = µA∆A(x) ∈ h[I]. These are
unique elements since H is linearized in the basis h. We now let Cy

x =
{

A |= I : xA = y
}

.
So far we have not considered any commutative property of H. In general we have

no control on the set Cy
x , but when H is commutative and cocommutative, it is tractable.

Given x, y ∈ h[I] such that Cy
x 6= ∅, choose a fixed minimal element Λ = (Λ1, Λ2, . . . , Λm)

in Cy
x under refinement. We will see in Lemma 3.3 that Λ is unique up to permutation

of its parts. We define a simple hypergraph Gy
x on the vertex set [m] where U ⊆ [m] is a

hyperedge of Gy
x if and only if

∏
i∈U

xΛi 6= x∪i∈UΛi and ∀(P ⊂ U) ∏
i∈P

xΛi = x∪i∈PΛi . (3.2)

Up to a reordering of the vertices {1, 2, . . . , m}, commutativity, cocommutativity and
Lemma 3.3 guarantee that Gy

x is well defined and does not depend on our choice of Λ.

Theorem 3.1. Under the conditions above

SI(x) = ∑
y∈h[I]

a(Gy
x)y, (3.3)

where a(Gy
x), defined in Section 3.1, is a signed sum of acyclic orientations of the hypergraph Gy

x.

Remark 3.2. If Gy
x is a graph, that is, any hyperedge U ∈ Gy

x is such that |U| = 2,
then every acyclic orientation will have the same sign. Hence the theorem above gives
a cancelation free formula for the antipode as shown in [7]. In general it will not be
cancelation free but it is the best generalization, to our knowledge, for hypergraphs and
to a large class of Hopf monoids and Hopf algebras.

Structure of Cy
x and its hypergraph Gy

x: We establish some properties of Cy
x =

{
A |=

I : xA = y
}

. This will allow us to determine the coefficient of y in S(x) given by
cy

x = ∑A∈Cy
x
(−1)`(A).

Lemma 3.3. If A and Λ in Cy
x are two minimal set compositions under refinement, then A is a

permutation of the parts of Λ. Conversely, any set composition obtained by a permutation of the
parts of Λ belongs to Cy

x and is minimal.

Lemma 3.4. If Cy
x 6= ∅, then for any A ∈ Cy

x and Λ ∈ Cy
x minimal, we have that [Λ, A] ⊆ Cy

x .

Lemma 3.5. The minimal elements of
(⋃

σ∈Sm [σΛ, (I)]
)
\ Cy

x are all the permutations of set
compositions of the form (

⋃
i∈U Λi, Λv1 , Λv2 , . . . , Λvr) for some U ∈ {1, 2, . . . , m}, where r =

m− |U| and {v1, . . . , vr} = I \U.

This defines the hypergraph Gy
x associated with Cy

x . For fixed x and y, Lemma 3.5
gives us a set of subsets U ⊆ I defining Cy

x . Gy
x = {U ⊆ I : U minimal, ∏i∈U xΛi 6=

x⋃
i∈U Λi}. The hypergraph Gy

x is as defined in (3.2).
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Example 3.6. Let HG be as in Example 1.3. Consider I = {a, b, c, d, e} and pick x ={
{b, c}, {a, b, e}, {a, d, e}, {b, c, e}

}
and y =

{
{b, c}

}
in hg[I]. We can represent x and y

as follows:
x =

a b c
d e y =

a b c
d e

Up to permutation, the minimum refinement of Cy
x is Λ = (a, bc, d, e). Since Λ has 4

parts, the hypergraph Gy
x is build on the set {1, 2, 3, 4}. We have that xbcxe 6= xbce and

xaxdxe 6= xade. Those are the only minimal coarsening of parts of Λ that yield such
inequalities. Hence Gy

x =
{
{1, 3, 4}, {2, 4}

}
. We now identify the set compositions in⋃

σ∈Sm [σΛ, (I)] with the set compositions in
⋃

σ∈Sm [(σ(1), . . . , σ(m)), (12 · · ·m)]. There
are 4! minimal elements with four parts. There are 30 compositions with 3 parts, namely
all the permutations of (12, 3, 4), (13, 2, 4), (14, 2, 3), (23, 1, 4), (34, 1, 2). We have removed
here all the permutations of (24, 1, 3) and above. With 2 parts we have all the permuta-
tions of (123, 4), (12, 34), (14, 23) for a total of 6. We have removed the permutations of
(134, 2). Here cy

x = 24− 30 + 6 = 0

The identification between
⋃

σ∈Sm [σΛ, (I)] with
⋃

σ∈Sm [(σ(1), . . . , σ(m)), (12 · · ·m)]

shows that computing cy
x is equivalent to computing the coefficient of ε, the hypergraph

on [m] with no edges, in the antipode of Gy
x in the Hopf monoid of hypergraphs. This

implies the following theorem:

Theorem 3.7. Given a commutative and cocommutative linearized Hopf monoid H, let x, y ∈
h[I]. We have cy

x = cε
x/y where ε is the hypergraph on [m] with no edges and x/y = Gy

x is the
hypergraph given in (3.2).

3.1 cy
x as a signed sum of acyclic orientations of simple hypergraphs

Recall that Gy
x is a hypergraph on the vertices {1, 2, · · · , m} as defined in (3.2). The

ordering of {1, 2, · · · , m} depends on a fixed choice of minimal element in Cy
x .

Definition 3.8 (Orientation and head). Given a hypergraph G an orientation (a, b) of a
hyperedge U ∈ G is a choice of two nonempty subsets a, b of U such that U = a∪ b and
a ∩ b = ∅. We say that a is the head of the orientation a→ b of U. In general if |U| = n,
then there are a total of 2n − 2 possible orientations. An orientation of G is an orientation
of all the hyperedges of G. Given an orientation O on G, we say that (a, b) ∈ O if it is
the orientation of an hyperedge U = a∪ b in G.

Definition 3.9 (Acyclic orientation). Let G be a hypergraph on the vertex set V. Given
an orientation O of G, we construct an oriented graph G/O as follow. We let V/O
be the finest equivalence class of elements of V defines by the heads of O. That is
the equivalence defined by the transitive closure of the relation a ∼ b if a, b ∈ a for
some head a of O. The oriented edges ([a], [b]) belong to G/O for equivalence classes
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[a], [b] ∈ V/O if and only if there is an oriented hyperedge (a, b) of O such that a ∈ a

and b ∈ b. An orientation O of G is acyclic if the oriented graph G/O has no cycles.

Example 3.10. Let G =
{
{1, 2, 4}, {2, 3, 4}

}
be a hypergraph on the vertex set V =

{1, 2, 3, 4}. There are (23 − 2)(23 − 2) = 36 possible orientations of G. The orien-
tation O =

{
({4}, {1, 2}), ({2, 4}, {3})

}
is not acyclic. To see this, the set V/O =

{{1}, {2, 4}, {3}} and the oriented graph G/O contain the 1-cycle ([4], [2]). Similarly the
orientation O′ =

{
({4}, {1, 2}), ({2, 3}, {4})

}
is not acyclic. The equivalence set V/O′ =

{{1}, {2, 3}, {4}} and the oriented graph G/O′ contains the 2-cycle ([4], [2]); ([2], [4]).
There are 20 acyclic orientations and {({4}, {1, 2}), ({4}, {2, 3})} is one example.

Let O
y
x be the set of acyclic orientations of Gy

x. For any 1 ≤ i ≤ `, let Ai,` = Ai ∪
Ai+1 ∪ · · · ∪ A` and let G/Oi,` be the restriction of G/O to the set Ai,`.

Lemma 3.11. For x, y ∈ h[I], consider the hypergraph Gy
x on V = {1, 2, . . . , m}. There is a

surjective map Ω : Cy
x → O

y
x. More precisely,

(a) For any A = (A1, A2, . . . , A`) ∈ C
y
x there is a unique Ω(A) ∈ O

y
x such that for U ∈ Gy

x
the orientation of U is given by (U ∩ Ai, U \ Ai) where i = min{j : Aj ∩ U 6= ∅}.
Furthermore V/Ω(A) is a refinement of {A1, A2, . . . , A`}.

(b) For any O ∈ O
y
x, there is a unique AO = (A1, A2, . . . , A`) ∈ C

y
x such that V/O =

{A1, A2, . . . , A`} and Ai is the unique source of the restriction G/Oi,` where min(Ai) is
maximal among the sources of G/Oi,`. We have that Ω(AO) = O.

Theorem 3.12. For any x, y ∈ h[I] such that Cy
x 6= ∅ we have cy

x = ∑O∈Oy
x
(−1)`(AO).

Example 3.13. Let x =
{
{1, 2, 4}, {2, 3, 4}

}
be a hypergraph on the vertices {1, 2, 3, 4}. A

full computation of the antipode gives us

S(
2 1

3 4
) = −

2 1
3 4

+ 2
2 1

3 4
+ 2

2 1
3 4 − 2

2 1
3 4

Using Theorem 3.1 we now need to use all 20 acyclic orientations of Example 3.10.
Lemma 3.11 (b) gives us the following 20 set compositions (4, 3, 2, 1); (3, 4, 2, 1); (34, 2, 1);
(3, 2, 4, 1); (2, 4, 3, 1); (23, 4, 1); (1, 4, 3, 2); (3, 1, 4, 2); (1, 2, 4, 3); (1, 23, 4); (1, 24, 3); (1, 34, 2);
(3, 12, 4); (12, 4, 3); (123, 4); (14, 3, 2); (3, 14, 2); (134, 2); (3, 24, 1); (24, 3, 1). There are 9
even length set compositions in this list and 11 odd length. The coefficient is indeed
9− 11 = −2. For the coefficient of x in S(x), we remark that x/x is a single point with
no edge. There is a unique orientation of x/x and it is represented by a set composi-
tion with a single part. Thus the coefficient is −1. For y =

{
{1, 2, 4}

}
, x/y is a graph

on two vertices with a single edge between the vertices. There are two orientations of
such graph and each orientation is represented with a set composition having two parts.
Hence the coefficient is 2. The same argument applies for y′ =

{
{2, 3, 4}

}
.
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4 Applications with Hopf algebras

We have that K(L×H) ∼= K(H). Given (α, x) ∈ (L×H)[n]Sn , the isomorphism is explic-
itly given by the map (α, x) 7→ H[α−1](x) where α−1 : [n] → [n] is the unique bijection
such that α−1(α) = 12 · · · n and H[α−1] : H[n] → H[n] is obtained via the functor H.
Theorem 2.1 gives us the following formula. For x ∈ H[n]

S(x) = ∑
(β,y)∈(l×h)[n]

cβ,y
12···n,xH[β−1](y) = ∑

z∈h[n]

(
∑

β∈l[n]
cβ,H[β](z)

12···n,x

)
z . (4.1)

Here we have identified the linear order β ∈ l[n] and the bijection β = (β−1)−1 : [n]→ [n]
in the notation H[β](z). From Theorem 2.1 we have obtained that the cβ,H[β](z)

12···n,x are ±1,
but further cancelation may occur in (4.1). It is not the best formula in most cases but it
is an improvement on Takeushi’s formula. In the cases of graphs for the monoid G with
basis g it is not cancelation free, but in some other examples it could be quite useful.

Example 4.1. Consider now the Hopf monoid L in Example 1.1. The Hopf algebra
PR = K(L) was introduced by Patras-Reutenauer [8] and is also studied in [3].

Theorem 4.2. For the Hopf algebra PR and α ∈ l[n] S(α) = ∑γ∈l[n](−1)mdα,γ γ where
m = `

(
ε ∨ γ

)
and dα,γ is the number of β ∈ l[n] such that for Λ = β ∨ (β ◦ γ) we have β is

increasing with respect to ε within each part of Λ, β ◦ γ is increasing with respect to α within
each part of Λ, and maxε(Λi) >ε minε(Λi+1) or maxα(Λi) >α minα(Λi+1) for all 1 ≤ i < m.

4.1 Using the antipode formula to derive new identities

Any multiplicative ζ : H → k gives rise to combinatorial invariant χ = φt ◦Ψ.

Example 4.3. Consider PR = K(L) as studied in Example 4.1 and let ζ(x) = 1 if x = ε,
zero otherwise. In this case ζ is multiplicative. PR is cocommutative, hence Ψ : PR →
QSym is a symmetric function (see [2]). Here for α ∈ l[n] we have Ψ(α) = ∑a|=n ca(α)Ma,
where a = (a1, . . . , a`) |= n is an integer composition of n, and ca(α) is the number of
ways to decompose α into increasing subsequences of type a. More precisely

ca(α) =
∣∣{A |= [n] : for 1 ≤ i ≤ `, |Ai| = ai and α|Ai is increasing}

∣∣.
The chromatic polynomial χα(t) is then χα(t) = ∑a|=n ca(α)(

t
`(a)). This polynomial,

when evaluated at t = m counts the number of ways to color the entries of α with
at most m distinct colors such that α restricted to a single color is increasing. Using
Theorem 4.2 we get the identity

∑
a|=n

(−1)`(α)ca(α) = χα(−1) = ζ ◦ S(α) = (−1)ndα,ε. (4.2)
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For any β ∈ l[n] and γ = ε in Theorem 4.2, we have Λ = β and

dα,ε =
∣∣{β ∈ l[n] : βi > βi+1 or α−1(βi) > α−1(βi+1)}

∣∣.
The identity (4.2) relates combinatorial invariants for permutations that look a priori
unrelated.

Remark 4.4. To any α ∈ l[n], one may associate a partial order Pα where αi ≺ αj if i < j
and αi > αj. Let Gα be the incomparable graph associated to Pα (see [9]). The symmetric
function Ψ(α) above is in fact the Stanley’s chromatic symmetric function of Gα.

Example 4.5. Let us consider the case where ζ21 : PR → k defined by ζ21(x) = 1 if
x = 2143 . . . (2n)(2n− 1), zero otherwise. This defines a symmetric function Ψ21 : PR→
QSym. Here for α ∈ l[n] we have Ψ21(α) = ∑a|=n c′a(α)Ma, where a = (2a1, . . . , 2a`) |= n
is an integer composition of n with even parts, and ca(α) is the number of ways to
decompose α into 21∗-subsequences of type a. More precisely

c′a(α) =
∣∣{A |= [n] : for 1 ≤ i ≤ `, |Ai| = 2ai and st(α|Ai) = 2143 . . . (2ai)(2ai − 1)}

∣∣.
These numbers are new and strange but seem to have interesting properties to study.

The chromatic polynomial χ21
α (t) is then χ21

α (t) = ∑a|=n c′a(α)(
t

`(a)). This polynomial,
when evaluated at t = m counts the number of ways to colors the entries of α with at
most m distinct colors such that α restricted to a single color is a 21∗-sequence. Using
Theorem 4.2 we get the identity

∑
a|=n

(−1)`(α)c′a(α) = (−1)n/2dα,2143...(2n)(2n−1). (4.3)

Remark 4.6. The symmetric function Ψ21(α) above is very different from the Stanley
chromatic symmetric function for any graph.

Conjecture 4.7. (−1)n/2Ψ21(α)(−h1,−h2, . . .) is h-positive.

5 Hypergraphical Nestohedron and antipode

Definition 5.1 (Hypergraphical Nestohedron). Given a hypergraph G on V =
{1, 2, . . . , n}, the Hypergraphical Nestohedron PG associated to G is the polytope in Rn =
R{e1, e2, . . . , en} defined by the Minkowski sum PG = ∑U∈G ∆U, where ∆U is the simplex
given by the convex hull of the points {ei : i ∈ U}.

The acyclic orientations of G label certain exterior faces of PG. These orientations
encode the coefficients of S(G).

For example, let G =
1
3

2 . We then have PG = ∆123 + ∆23, where
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∆123 =
1
3

2

1
3

2 1
3

2

13 212
3

1
23
123

∆23 = 3
2

3
2

23

Here we draw the Minkowski sum of the polytopes above, with the orientation in each
face.

1
3

2 1
3

2

1
3

2 1
3

2

13 212
3

1
23

1
23

123

The coefficient of the discrete graph is the sum of the six acyclic orientations that
correspond to the three faces on the left and the three faces on the right. We call these
exterior faces as no contraction occurs. The total homology is 2 in this case. The co-
efficient +2 in S(G) corresponds to the two horizontal faces in the picture (only {2, 3}
is contracted). Finally the coefficient −1 corresponds the interior face of the polytope

({1, 2, 3} is contracted). Thus, S(G) = −G + 2( 1
3

2 )− 2( 1
3

2 ).
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